Well-posedness and Regularity of Generalized Navier-stokes Equations in Some Critical Q−spaces
نویسندگان
چکیده
We study the well-posedness and regularity of the generalized Navier-Stokes equations with initial data in a new critical space Q α;∞ (R ) = ∇ · (Qα(R )), β ∈ ( 1 2 , 1) which is larger than some known critical homogeneous Besov spaces. Here Qα(R ) is a space defined as the set of all measurable functions with sup(l(I)) Z
منابع مشابه
On the well-posedness of the full low-Mach number limit system in general critical Besov spaces
This work is devoted to the well-posedness issue for the low-Mach number limit system obtained from the full compressible Navier-Stokes system, in the whole space R with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type Ḃ p,1. If, in addition, t...
متن کاملar X iv : 0 90 6 . 51 40 v 1 [ m at h . A P ] 2 8 Ju n 20 09 WELL - POSEDNESS FOR FRACTIONAL NAVIER - STOKES EQUATIONS IN CRITICAL SPACES
In this paper, we prove the well-posedness for the fractional NavierStokes equations in critical spaces G −(2β−1) n (R ) and BMO−(2β−1)(Rn). Both of them are close to the largest critical space Ḃ −(2β−1) ∞,∞ (R ). In G −(2β−1) n (R ), we establish the well-posedness based on a priori estimates for the fractional Navier-Stokes equations in Besov spaces. To obtain the well-posedness in BMO−(2β−1)...
متن کاملGlobal well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...
متن کاملWell-Posedness of a Fully Coupled Navier-Stokes/Q-tensor System with Inhomogeneous Boundary Data
We prove short-time well-posedness and existence of global weak solutions of the Beris–Edwards model for nematic liquid crystals in the case of a bounded domain with inhomogeneous mixed Dirichlet and Neumann boundary conditions. The system consists of the Navier-Stokes equations coupled with an evolution equation for the Q-tensor. The solutions possess higher regularity in time of order one com...
متن کاملWell-posedness in critical spaces for the compressible Navier-Stokes equations with density dependent viscosities
In this paper, we prove the local well-posedness in critical Besov spaces for the compressible Navier-Stokes equations with density dependent viscosities under the assumption that the initial density is bounded away from zero.
متن کامل